Skip to content

client

ExecutorInstances dataclass

Number of executors to request

Attributes:

Name Type Description
min int | None

Minimum number of executors. If provided, dynamic allocation is enabled

max int | None

Maximum number of executors. If provided, dynamic allocation is enabled

initial int | None

Initial number of executors. If max and min are not provided, defaults to 2, dynamic allocation will be disabled and the number of executors will be fixed.

Source code in spark_on_k8s/client.py
57
58
59
60
61
62
63
64
65
66
67
68
69
70
@dataclass(**KW_ONLY_DATACLASS)
class ExecutorInstances:
    """Number of executors to request

    Attributes:
        min: Minimum number of executors. If provided, dynamic allocation is enabled
        max: Maximum number of executors. If provided, dynamic allocation is enabled
        initial: Initial number of executors. If max and min are not provided, defaults to 2,
            dynamic allocation will be disabled and the number of executors will be fixed.
    """

    min: int | None = None
    max: int | None = None
    initial: int | None = None

PodResources dataclass

Resources to request for the Spark driver and executors

Attributes:

Name Type Description
cpu int

Number of CPU cores to request

memory int

Amount of memory to request in MB

memory_overhead int

Amount of memory overhead to request in MB

Source code in spark_on_k8s/client.py
42
43
44
45
46
47
48
49
50
51
52
53
54
@dataclass(**KW_ONLY_DATACLASS)
class PodResources:
    """Resources to request for the Spark driver and executors

    Attributes:
        cpu: Number of CPU cores to request
        memory: Amount of memory to request in MB
        memory_overhead: Amount of memory overhead to request in MB
    """

    cpu: int = 1
    memory: int = 1024
    memory_overhead: int = 512

SparkAppWait

Bases: str, Enum

Enum for the Spark app waiter options

Source code in spark_on_k8s/client.py
34
35
36
37
38
39
class SparkAppWait(str, Enum):
    """Enum for the Spark app waiter options"""

    NO_WAIT = "no_wait"
    WAIT = "wait"
    LOG = "log"

SparkOnK8S

Bases: LoggingMixin

Client for submitting Spark apps to Kubernetes

Examples:

>>> from spark_on_k8s.client import SparkOnK8S
>>> spark = SparkOnK8S()
>>> spark.submit_app(
...     image="husseinawala/spark:v3.5.0",
...     app_path="local:///opt/spark/examples/jars/spark-examples_2.12-3.5.0.jar",
...     class_name="org.apache.spark.examples.SparkPi",
...     app_name="spark-pi",
...     app_arguments=["1000"],
...     namespace="spark",
...     service_account="spark",
...     app_waiter="log",
... )

Parameters:

Name Type Description Default
k8s_client_manager KubernetesClientManager | None

Kubernetes client manager to use for creating Kubernetes clients

None
logger_name str | None

Name of the logger to use for logging, defaults to "SparkOnK8S"

None
Source code in spark_on_k8s/client.py
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
class SparkOnK8S(LoggingMixin):
    """Client for submitting Spark apps to Kubernetes

    Examples:
        >>> from spark_on_k8s.client import SparkOnK8S
        >>> spark = SparkOnK8S()
        >>> spark.submit_app(
        ...     image="husseinawala/spark:v3.5.0",
        ...     app_path="local:///opt/spark/examples/jars/spark-examples_2.12-3.5.0.jar",
        ...     class_name="org.apache.spark.examples.SparkPi",
        ...     app_name="spark-pi",
        ...     app_arguments=["1000"],
        ...     namespace="spark",
        ...     service_account="spark",
        ...     app_waiter="log",
        ... )

    Args:
        k8s_client_manager: Kubernetes client manager to use for creating Kubernetes clients
        logger_name: Name of the logger to use for logging, defaults to "SparkOnK8S"
    """

    def __init__(
        self,
        *,
        k8s_client_manager: KubernetesClientManager | None = None,
        logger_name: str | None = None,
    ):
        super().__init__(logger_name=logger_name or "SparkOnK8S")
        self.k8s_client_manager = k8s_client_manager or KubernetesClientManager()
        self.app_manager = SparkAppManager(k8s_client_manager=self.k8s_client_manager)

    def submit_app(
        self,
        *,
        image: str | ArgNotSet = NOTSET,
        app_path: str | ArgNotSet = NOTSET,
        namespace: str | ArgNotSet = NOTSET,
        service_account: str | ArgNotSet = NOTSET,
        app_name: str | ArgNotSet = NOTSET,
        spark_conf: dict[str, str] | ArgNotSet = NOTSET,
        class_name: str | ArgNotSet = NOTSET,
        packages: list[str] | ArgNotSet = NOTSET,
        app_arguments: list[str] | ArgNotSet = NOTSET,
        app_id_suffix: Callable[[], str] | ArgNotSet = NOTSET,
        app_waiter: Literal["no_wait", "wait", "log"] | ArgNotSet = NOTSET,
        image_pull_policy: Literal["Always", "Never", "IfNotPresent"] | ArgNotSet = NOTSET,
        ui_reverse_proxy: bool | ArgNotSet = NOTSET,
        driver_resources: PodResources | ArgNotSet = NOTSET,
        executor_resources: PodResources | ArgNotSet = NOTSET,
        executor_instances: ExecutorInstances | ArgNotSet = NOTSET,
        should_print: bool | ArgNotSet = NOTSET,
        secret_values: dict[str, str] | ArgNotSet = NOTSET,
        driver_ephemeral_configmaps_volumes: list[ConfigMap] | ArgNotSet = NOTSET,
        driver_env_vars_from_secrets: list[str] | ArgNotSet = NOTSET,
        volumes: list[k8s.V1Volume] | ArgNotSet = NOTSET,
        driver_volume_mounts: list[k8s.V1VolumeMount] | ArgNotSet = NOTSET,
        executor_volume_mounts: list[k8s.V1VolumeMount] | ArgNotSet = NOTSET,
        driver_node_selector: dict[str, str] | ArgNotSet = NOTSET,
        executor_node_selector: dict[str, str] | ArgNotSet = NOTSET,
        driver_annotations: dict[str, str] | ArgNotSet = NOTSET,
        executor_annotations: dict[str, str] | ArgNotSet = NOTSET,
        driver_labels: dict[str, str] | ArgNotSet = NOTSET,
        executor_labels: dict[str, str] | ArgNotSet = NOTSET,
        driver_tolerations: list[k8s.V1Toleration] | ArgNotSet = NOTSET,
        executor_pod_template_path: str | ArgNotSet = NOTSET,
        startup_timeout: int | ArgNotSet = NOTSET,
    ) -> str:
        """Submit a Spark app to Kubernetes

        Args:
            image: Docker image to use for the Spark driver and executors
            app_path: Path to the application JAR / Python / R file
            namespace: Kubernetes namespace to use, defaults to "default"
            service_account: Kubernetes service account to use for the Spark driver,
                defaults to "spark"
            app_name: Name of the Spark application, defaults to a generated name as
                `spark-app{app_id_suffix()}`
            spark_conf: Dictionary of spark configuration to pass to the application
            class_name: Name of the class to execute
            packages: List of maven coordinates of jars to include in the classpath
            app_arguments: List of arguments to pass to the application
            app_id_suffix: Function to generate a suffix for the application ID, defaults to
                `default_app_id_suffix`
            app_waiter: How to wait for the app to finish. One of "no_wait", "wait", or "log"
            image_pull_policy: Image pull policy for the driver and executors, defaults to "IfNotPresent"
            ui_reverse_proxy: Whether to use a reverse proxy for the Spark UI, defaults to False
            driver_resources: Resources to request for the Spark driver. Defaults to 1 CPU core, 1Gi of
                memory and512Mi of memory overhead
            executor_resources: Resources to request for the Spark executors. Defaults to 1 CPU core, 1Gi
                of memory and 512Mi of memory overhead
            executor_instances: Number of executors to request. If max and min are not provided, dynamic
                allocation will be disabled and the number of executors will be fixed to initial or 2 if
                initial is not provided. If max or min or both are provided, dynamic allocation will be
                enabled and the number of executors will be between min and max (inclusive), and initial
                will be the initial number of executors with a default of 0.
            should_print: Whether to print logs instead of logging them, defaults to False
            secret_values: Dictionary of secret values to pass to the application as environment variables
            driver_ephemeral_configmaps_volumes: List of ephemeral configmaps to create for the application
                driver
            driver_env_vars_from_secrets: List of secret names to load environment variables from for
                the driver
            volumes: List of volumes to mount to the driver and/or executors
            driver_volume_mounts: List of volume mounts to mount to the driver
            executor_volume_mounts: List of volume mounts to mount to the executors
            driver_node_selector: Node selector for the driver
            executor_node_selector: Node selector for the executors
            driver_tolerations: List of tolerations for the driver
            executor_pod_template_path: Path to the executor pod template file
            startup_timeout: Timeout in seconds to wait for the application to start

        Returns:
            Name of the Spark application pod
        """
        if image is NOTSET:
            if Configuration.SPARK_ON_K8S_DOCKER_IMAGE is None:
                raise ValueError(
                    "Docker image is not set."
                    "Please set the image argument or the environment variable SPARK_ON_K8S_DOCKER_IMAGE"
                )
            image = Configuration.SPARK_ON_K8S_DOCKER_IMAGE
        if app_path is NOTSET:
            if Configuration.SPARK_ON_K8S_APP_PATH is None:
                raise ValueError(
                    "Application path is not set."
                    "Please set the app_path argument or the environment variable SPARK_ON_K8S_APP_PATH"
                )
            app_path = Configuration.SPARK_ON_K8S_APP_PATH
        if namespace is NOTSET:
            namespace = Configuration.SPARK_ON_K8S_NAMESPACE
        if service_account is NOTSET:
            service_account = Configuration.SPARK_ON_K8S_SERVICE_ACCOUNT
        if app_name is NOTSET:
            app_name = Configuration.SPARK_ON_K8S_APP_NAME
        if spark_conf is NOTSET:
            spark_conf = Configuration.SPARK_ON_K8S_SPARK_CONF
        if class_name is NOTSET:
            class_name = Configuration.SPARK_ON_K8S_CLASS_NAME
        if packages is NOTSET:
            packages = (
                Configuration.SPARK_ON_K8S_PACKAGES.split(",") if Configuration.SPARK_ON_K8S_PACKAGES else []
            )
        if app_arguments is NOTSET:
            app_arguments = Configuration.SPARK_ON_K8S_APP_ARGUMENTS
        if app_id_suffix is NOTSET:
            app_id_suffix = default_app_id_suffix
        if app_waiter is NOTSET:
            app_waiter = Configuration.SPARK_ON_K8S_APP_WAITER
        if image_pull_policy is NOTSET:
            image_pull_policy = Configuration.SPARK_ON_K8S_IMAGE_PULL_POLICY
        if ui_reverse_proxy is NOTSET:
            ui_reverse_proxy = Configuration.SPARK_ON_K8S_UI_REVERSE_PROXY
        if driver_resources is NOTSET:
            driver_resources = PodResources(
                cpu=Configuration.SPARK_ON_K8S_DRIVER_CPU,
                memory=Configuration.SPARK_ON_K8S_DRIVER_MEMORY,
                memory_overhead=Configuration.SPARK_ON_K8S_DRIVER_MEMORY_OVERHEAD,
            )
        if executor_resources is NOTSET:
            executor_resources = PodResources(
                cpu=Configuration.SPARK_ON_K8S_EXECUTOR_CPU,
                memory=Configuration.SPARK_ON_K8S_EXECUTOR_MEMORY,
                memory_overhead=Configuration.SPARK_ON_K8S_EXECUTOR_MEMORY_OVERHEAD,
            )
        if executor_instances is NOTSET:
            executor_instances = ExecutorInstances(
                min=Configuration.SPARK_ON_K8S_EXECUTOR_MIN_INSTANCES,
                max=Configuration.SPARK_ON_K8S_EXECUTOR_MAX_INSTANCES,
                initial=Configuration.SPARK_ON_K8S_EXECUTOR_INITIAL_INSTANCES,
            )
            if (
                executor_instances.min is None
                and executor_instances.max is None
                and executor_instances.initial is None
            ):
                executor_instances.initial = 2
        app_name, app_id = self._parse_app_name_and_id(
            app_name=app_name, app_id_suffix=app_id_suffix, should_print=should_print
        )
        if secret_values is not NOTSET and secret_values:
            env_from_secrets = [app_id]
        else:
            secret_values = Configuration.SPARK_ON_K8S_SECRET_ENV_VAR
            env_from_secrets = [app_id] if secret_values else []
        if driver_ephemeral_configmaps_volumes is NOTSET:
            driver_ephemeral_configmaps_volumes = []
        if driver_env_vars_from_secrets is NOTSET:
            driver_env_vars_from_secrets = Configuration.SPARK_ON_K8S_DRIVER_ENV_VARS_FROM_SECRET
        if driver_env_vars_from_secrets:
            env_from_secrets.extend(driver_env_vars_from_secrets)
        if volumes is NOTSET or volumes is None:
            volumes = []
        if driver_volume_mounts is NOTSET or driver_volume_mounts is None:
            driver_volume_mounts = []
        if executor_volume_mounts is NOTSET or executor_volume_mounts is None:
            executor_volume_mounts = []
        if driver_node_selector is NOTSET or driver_node_selector is None:
            driver_node_selector = {}
        if executor_node_selector is NOTSET or executor_node_selector is None:
            executor_node_selector = {}
        if driver_annotations is NOTSET or driver_annotations is None:
            driver_annotations = {}
        if executor_annotations is NOTSET or executor_annotations is None:
            executor_annotations = {}
        if driver_labels is NOTSET or driver_labels is None:
            driver_labels = {}
        if executor_labels is NOTSET or executor_labels is None:
            executor_labels = {}
        if driver_tolerations is NOTSET or driver_tolerations is None:
            driver_tolerations = []
        if executor_pod_template_path is NOTSET or executor_pod_template_path is None:
            executor_pod_template_path = Configuration.SPARK_ON_K8S_EXECUTOR_POD_TEMPLATE_PATH
        if startup_timeout is NOTSET:
            startup_timeout = Configuration.SPARK_ON_K8S_STARTUP_TIMEOUT

        spark_conf = spark_conf or {}
        main_class_parameters = app_arguments or []

        driver_resources = driver_resources or PodResources()
        executor_resources = executor_resources or PodResources()
        executor_instances = executor_instances or ExecutorInstances(initial=2)

        basic_conf = {
            "spark.app.name": app_name,
            "spark.app.id": app_id,
            "spark.kubernetes.namespace": namespace,
            "spark.kubernetes.authenticate.driver.serviceAccountName": service_account,
            "spark.kubernetes.container.image": image,
            "spark.driver.host": app_id,
            "spark.driver.port": "7077",
            "spark.kubernetes.driver.pod.name": f"{app_id}-driver",
            "spark.kubernetes.executor.podNamePrefix": app_id,
            "spark.kubernetes.container.image.pullPolicy": image_pull_policy,
            "spark.driver.memory": f"{driver_resources.memory}m",
            "spark.executor.cores": f"{executor_resources.cpu}",
            "spark.executor.memory": f"{executor_resources.memory}m",
            "spark.executor.memoryOverhead": f"{executor_resources.memory_overhead}m",
            **self._executor_secrets_config(secret_values=secret_values, app_id=app_id),
        }
        extra_labels = {}
        if ui_reverse_proxy:
            basic_conf["spark.ui.proxyBase"] = f"/webserver/ui/{namespace}/{app_id}"
            basic_conf["spark.ui.proxyRedirectUri"] = "/"
            extra_labels["spark-ui-proxy"] = "true"
        if executor_instances.min is not None or executor_instances.max is not None:
            basic_conf["spark.dynamicAllocation.enabled"] = "true"
            basic_conf["spark.dynamicAllocation.shuffleTracking.enabled"] = "true"
            basic_conf["spark.dynamicAllocation.minExecutors"] = f"{executor_instances.min or 0}"
            if executor_instances.max is not None:
                basic_conf["spark.dynamicAllocation.maxExecutors"] = f"{executor_instances.max}"
            basic_conf["spark.dynamicAllocation.initialExecutors"] = f"{executor_instances.initial or 0}"
        else:
            basic_conf["spark.executor.instances"] = (
                f"{executor_instances.initial if executor_instances.initial is not None else 2}"
            )
        if executor_volume_mounts:
            basic_conf.update(
                self._executor_volumes_config(volumes=volumes, volume_mounts=executor_volume_mounts)
            )
        if executor_node_selector:
            basic_conf.update(self._executor_node_selector(node_selector=executor_node_selector))
        if executor_labels:
            basic_conf.update(self._executor_labels(labels=executor_labels))
        if executor_annotations:
            basic_conf.update(self._executor_annotations(annotations=executor_annotations))
        if executor_pod_template_path:
            basic_conf.update(self._executor_pod_template_path(executor_pod_template_path))
        driver_command_args = ["driver", "--master", "k8s://https://kubernetes.default.svc.cluster.local:443"]
        if class_name:
            driver_command_args.extend(["--class", class_name])
        if packages:
            driver_command_args.extend(["--packages", ",".join(packages)])
        driver_command_args.extend(
            self._spark_config_to_arguments({**basic_conf, **spark_conf}) + [app_path, *main_class_parameters]
        )

        if driver_ephemeral_configmaps_volumes:
            application_configmaps_volumes = self.app_manager.create_configmap_objects(
                app_name=app_name,
                app_id=app_id,
                configmaps=driver_ephemeral_configmaps_volumes,
                namespace=namespace,
            )
            for ind, configmap in enumerate(application_configmaps_volumes):
                volumes.append(
                    k8s.V1Volume(
                        name=configmap.metadata.name,
                        config_map=k8s.V1ConfigMapVolumeSource(name=configmap.metadata.name),
                    )
                )
                driver_volume_mounts.append(
                    k8s.V1VolumeMount(
                        name=configmap.metadata.name,
                        mount_path=driver_ephemeral_configmaps_volumes[ind]["mount_path"],
                    )
                )
        else:
            application_configmaps_volumes = []

        pod = SparkAppManager.create_spark_pod_spec(
            app_name=app_name,
            app_id=app_id,
            image=image,
            image_pull_policy=image_pull_policy,
            namespace=namespace,
            service_account=service_account,
            args=driver_command_args,
            extra_labels={**extra_labels, **driver_labels},
            annotations=driver_annotations,
            pod_resources={
                "requests": {
                    "cpu": f"{driver_resources.cpu}",
                    "memory": f"{driver_resources.memory + driver_resources.memory_overhead}Mi",
                },
                "limits": {
                    "cpu": f"{driver_resources.cpu}",
                    "memory": f"{driver_resources.memory + driver_resources.memory_overhead}Mi",
                },
            },
            env_from_secrets=env_from_secrets,
            volumes=volumes,
            volume_mounts=driver_volume_mounts,
            node_selector=driver_node_selector,
            tolerations=driver_tolerations,
        )
        with self.k8s_client_manager.client() as client:
            api = k8s.CoreV1Api(client)
            if secret_values:
                application_secret = self.app_manager.create_secret_object(
                    app_name=app_name,
                    app_id=app_id,
                    secrets_values=secret_values,
                    namespace=namespace,
                )
                api.create_namespaced_secret(namespace=namespace, body=application_secret)
            for configmap in application_configmaps_volumes:
                api.create_namespaced_config_map(namespace=namespace, body=configmap)
            pod = api.create_namespaced_pod(
                namespace=namespace,
                body=pod,
            )
            if secret_values:
                application_secret.metadata.owner_references = [
                    k8s.V1OwnerReference(
                        api_version="v1",
                        kind="Pod",
                        name=pod.metadata.name,
                        uid=pod.metadata.uid,
                    )
                ]
                api.patch_namespaced_secret(
                    namespace=namespace,
                    name=application_secret.metadata.name,
                    body=application_secret,
                )
            for configmap in application_configmaps_volumes:
                configmap.metadata.owner_references = [
                    k8s.V1OwnerReference(
                        api_version="v1",
                        kind="Pod",
                        name=pod.metadata.name,
                        uid=pod.metadata.uid,
                    )
                ]
                api.patch_namespaced_config_map(
                    namespace=namespace,
                    name=configmap.metadata.name,
                    body=configmap,
                )
            api.create_namespaced_service(
                namespace=namespace,
                body=SparkAppManager.create_headless_service_object(
                    app_name=app_name,
                    app_id=app_id,
                    namespace=namespace,
                    pod_owner_uid=pod.metadata.uid,
                    extra_labels=extra_labels,
                ),
            )
        if app_waiter == SparkAppWait.LOG:
            self.app_manager.stream_logs(
                namespace=namespace,
                pod_name=pod.metadata.name,
                startup_timeout=startup_timeout,
                should_print=should_print,
            )
        elif app_waiter == SparkAppWait.WAIT:
            self.app_manager.wait_for_app(
                namespace=namespace,
                pod_name=pod.metadata.name,
                poll_interval=5,
                startup_timeout=startup_timeout,
                should_print=should_print,
            )
        return pod.metadata.name

    def _parse_app_name_and_id(
        self,
        *,
        app_name: str | None = None,
        app_id_suffix: Callable[[], str] = default_app_id_suffix,
        should_print: bool = False,
    ) -> tuple[str, str]:
        """Parse the application name and ID

        This function will generate a valid application name and ID from the provided application name.
            It will ensure that the application name and ID respect the Kubernetes naming conventions
            (e.g. no uppercase characters, no
        special characters, start with a letter, etc.), and they are not too long
            (less than 64 characters for service
        names and labels values).

        Args:
            app_name: Name of the Spark application
            app_id_suffix: Function to generate a suffix for the application ID,
                defaults to `default_app_id_suffix`
            should_print: Whether to print logs instead of logging them, defaults to False

        Returns:
            Tuple of the application name and ID
        """
        if not app_name:
            app_name = f"spark-app{app_id_suffix()}"
            app_id = app_name
        else:
            original_app_name = app_name
            # All to lowercase
            app_name = app_name.lower()
            app_id_suffix_str = app_id_suffix()
            if len(app_name) > (63 - len(app_id_suffix_str) + 1):
                app_name = app_name[: (63 - len(app_id_suffix_str)) + 1]
            # Replace all non-alphanumeric characters with dashes
            app_name = re.sub(r"[^0-9a-zA-Z]+", "-", app_name)
            # Remove leading non-alphabetic characters
            app_name = re.sub(r"^[^a-zA-Z]*", "", app_name)
            # Remove leading and trailing dashes
            app_name = re.sub(r"^-*", "", app_name)
            app_name = re.sub(r"-*$", "", app_name)
            app_id = app_name + app_id_suffix_str
            if app_name != original_app_name:
                self.log(
                    msg=(
                        f"Application name {original_app_name} is too long"
                        f" and will be truncated to {app_name}"
                    ),
                    level=logging.WARNING,
                    should_print=should_print,
                )
        return app_name, app_id

    @staticmethod
    def _value_to_str(value: Any) -> str:
        if isinstance(value, bool):
            return str(value).lower()
        return str(value)

    @staticmethod
    def _spark_config_to_arguments(spark_conf: dict[str, str] | None) -> list[str]:
        """Convert Spark configuration to a list of arguments

        Args:
            spark_conf: Spark configuration dictionary

        Returns:
            List of arguments
        """
        if not spark_conf:
            return []
        args = []
        for key, value in spark_conf.items():
            args.extend(["--conf", f"{key}={SparkOnK8S._value_to_str(value)}"])
        return args

    @staticmethod
    def _executor_secrets_config(
        secret_values: dict[str, str] | None,
        app_id: str,
    ) -> dict[str, str]:
        """Spark configuration to load environment variables from the secret

        Args:
            secret_values: Secret values to pass to the application as environment variables
            app_id: Application ID

        Returns:
            Spark configuration dictionary
        """
        if not secret_values:
            return {}
        return {
            f"spark.kubernetes.executor.secretKeyRef.{secret_name}": f"{app_id}:{secret_name}"
            for secret_name in secret_values.keys()
        }

    @staticmethod
    def _executor_volumes_config(
        volumes: list[k8s.V1Volume] | None,
        volume_mounts: list[k8s.V1VolumeMount] | None,
    ) -> dict[str, str]:
        """Spark configuration to mount volumes to the executors

        Args:
            volumes: List of volumes to mount to the driver and/or executors
            volume_mounts: List of volume mounts to mount to the executors

        Returns:
            Spark configuration dictionary
        """
        if not volumes:
            return {}
        config = {}
        # https://spark.apache.org/docs/latest/running-on-kubernetes.html#using-kubernetes-volumes
        supported_volume_types = {
            "hostPath",
            "emptyDir",
            "nfs",
            "persistentVolumeClaim",
        }
        loaded_volumes = {}
        volumes_config = {}
        for volume in volumes:
            volume_name = volume.name
            volume_mapped_type: str | None = None
            volume_type_str: str | None = None
            for attr in k8s.V1Volume.attribute_map:
                if attr != "name" and getattr(volume, attr) is not None:
                    volume_mapped_type = k8s.V1Volume.attribute_map[attr]
                    volume_type_str = k8s.V1Volume.openapi_types[attr]
                    volume = getattr(volume, attr)
                    break
            volume_type = getattr(k8s, volume_type_str)
            if volume_mapped_type not in supported_volume_types:
                continue
            loaded_volumes[volume_name] = volume_mapped_type
            volumes_config[volume_name] = {}
            for attr in volume_type.attribute_map:
                if getattr(volume, attr) is not None:
                    option_name = volume_type.attribute_map[attr]
                    volumes_config[volume_name][
                        f"spark.kubernetes.executor.volumes.{volume_mapped_type}.{volume_name}.{option_name}"
                    ] = getattr(volume, attr)
        for volume_mount in volume_mounts:
            if volume_mount.name not in loaded_volumes:
                raise ValueError(
                    f"Volume {volume_mount.name} is not found in the volumes list or is not supported.\n"
                    "Please make sure to add the volume to the volumes list and use one of"
                    f" the supported types: {supported_volume_types}"
                )
            config.update(volumes_config[volume_mount.name])
            volume_config_prefix = (
                "spark.kubernetes.executor.volumes."
                f"{loaded_volumes[volume_mount.name]}.{volume_mount.name}.mount"
            )
            config[f"{volume_config_prefix}.path"] = volume_mount.mount_path
            if volume_mount.sub_path:
                config[f"{volume_config_prefix}.subPath"] = volume_mount.sub_path
            if volume_mount.read_only:
                config[f"{volume_config_prefix}.readOnly"] = True
        return config

    @staticmethod
    def _executor_node_selector(
        node_selector: dict[str, str] | None,
    ) -> dict[str, str]:
        """Spark configuration to set node selector for the executors

        Args:
            node_selector: Node selector for the executors

        Returns:
            Spark configuration dictionary
        """
        if not node_selector:
            return {}
        return {
            f"spark.kubernetes.executor.node.selector.{key}": value for key, value in node_selector.items()
        }

    @staticmethod
    def _executor_labels(
        labels: dict[str, str] | None,
    ) -> dict[str, str]:
        """Spark configuration to set labels for the executors

        Args:
            labels: Labels for the executors

        Returns:
            Spark configuration dictionary
        """
        if not labels:
            return {}
        return {f"spark.kubernetes.executor.label.{key}": value for key, value in labels.items()}

    @staticmethod
    def _executor_annotations(
        annotations: dict[str, str] | None,
    ) -> dict[str, str]:
        """Spark configuration to set annotations for the executors

        Args:
            annotations: Annotations for the executors

        Returns:
            Spark configuration dictionary
        """
        if not annotations:
            return {}
        return {f"spark.kubernetes.executor.annotation.{key}": value for key, value in annotations.items()}

    @staticmethod
    def _executor_pod_template_path(
        executor_pod_template_path: str | None,
    ) -> dict[str, str]:
        """Spark configuration to set the executor pod template file

        Args:
            executor_pod_template_path: Path to the executor pod template file

        Returns:
            Spark configuration dictionary
        """
        if not executor_pod_template_path:
            return {}
        return {"spark.kubernetes.executor.podTemplateFile": executor_pod_template_path}

submit_app(*, image=NOTSET, app_path=NOTSET, namespace=NOTSET, service_account=NOTSET, app_name=NOTSET, spark_conf=NOTSET, class_name=NOTSET, packages=NOTSET, app_arguments=NOTSET, app_id_suffix=NOTSET, app_waiter=NOTSET, image_pull_policy=NOTSET, ui_reverse_proxy=NOTSET, driver_resources=NOTSET, executor_resources=NOTSET, executor_instances=NOTSET, should_print=NOTSET, secret_values=NOTSET, driver_ephemeral_configmaps_volumes=NOTSET, driver_env_vars_from_secrets=NOTSET, volumes=NOTSET, driver_volume_mounts=NOTSET, executor_volume_mounts=NOTSET, driver_node_selector=NOTSET, executor_node_selector=NOTSET, driver_annotations=NOTSET, executor_annotations=NOTSET, driver_labels=NOTSET, executor_labels=NOTSET, driver_tolerations=NOTSET, executor_pod_template_path=NOTSET, startup_timeout=NOTSET)

Submit a Spark app to Kubernetes

Parameters:

Name Type Description Default
image str | ArgNotSet

Docker image to use for the Spark driver and executors

NOTSET
app_path str | ArgNotSet

Path to the application JAR / Python / R file

NOTSET
namespace str | ArgNotSet

Kubernetes namespace to use, defaults to "default"

NOTSET
service_account str | ArgNotSet

Kubernetes service account to use for the Spark driver, defaults to "spark"

NOTSET
app_name str | ArgNotSet

Name of the Spark application, defaults to a generated name as spark-app{app_id_suffix()}

NOTSET
spark_conf dict[str, str] | ArgNotSet

Dictionary of spark configuration to pass to the application

NOTSET
class_name str | ArgNotSet

Name of the class to execute

NOTSET
packages list[str] | ArgNotSet

List of maven coordinates of jars to include in the classpath

NOTSET
app_arguments list[str] | ArgNotSet

List of arguments to pass to the application

NOTSET
app_id_suffix Callable[[], str] | ArgNotSet

Function to generate a suffix for the application ID, defaults to default_app_id_suffix

NOTSET
app_waiter Literal['no_wait', 'wait', 'log'] | ArgNotSet

How to wait for the app to finish. One of "no_wait", "wait", or "log"

NOTSET
image_pull_policy Literal['Always', 'Never', 'IfNotPresent'] | ArgNotSet

Image pull policy for the driver and executors, defaults to "IfNotPresent"

NOTSET
ui_reverse_proxy bool | ArgNotSet

Whether to use a reverse proxy for the Spark UI, defaults to False

NOTSET
driver_resources PodResources | ArgNotSet

Resources to request for the Spark driver. Defaults to 1 CPU core, 1Gi of memory and512Mi of memory overhead

NOTSET
executor_resources PodResources | ArgNotSet

Resources to request for the Spark executors. Defaults to 1 CPU core, 1Gi of memory and 512Mi of memory overhead

NOTSET
executor_instances ExecutorInstances | ArgNotSet

Number of executors to request. If max and min are not provided, dynamic allocation will be disabled and the number of executors will be fixed to initial or 2 if initial is not provided. If max or min or both are provided, dynamic allocation will be enabled and the number of executors will be between min and max (inclusive), and initial will be the initial number of executors with a default of 0.

NOTSET
should_print bool | ArgNotSet

Whether to print logs instead of logging them, defaults to False

NOTSET
secret_values dict[str, str] | ArgNotSet

Dictionary of secret values to pass to the application as environment variables

NOTSET
driver_ephemeral_configmaps_volumes list[ConfigMap] | ArgNotSet

List of ephemeral configmaps to create for the application driver

NOTSET
driver_env_vars_from_secrets list[str] | ArgNotSet

List of secret names to load environment variables from for the driver

NOTSET
volumes list[V1Volume] | ArgNotSet

List of volumes to mount to the driver and/or executors

NOTSET
driver_volume_mounts list[V1VolumeMount] | ArgNotSet

List of volume mounts to mount to the driver

NOTSET
executor_volume_mounts list[V1VolumeMount] | ArgNotSet

List of volume mounts to mount to the executors

NOTSET
driver_node_selector dict[str, str] | ArgNotSet

Node selector for the driver

NOTSET
executor_node_selector dict[str, str] | ArgNotSet

Node selector for the executors

NOTSET
driver_tolerations list[V1Toleration] | ArgNotSet

List of tolerations for the driver

NOTSET
executor_pod_template_path str | ArgNotSet

Path to the executor pod template file

NOTSET
startup_timeout int | ArgNotSet

Timeout in seconds to wait for the application to start

NOTSET

Returns:

Type Description
str

Name of the Spark application pod

Source code in spark_on_k8s/client.py
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
def submit_app(
    self,
    *,
    image: str | ArgNotSet = NOTSET,
    app_path: str | ArgNotSet = NOTSET,
    namespace: str | ArgNotSet = NOTSET,
    service_account: str | ArgNotSet = NOTSET,
    app_name: str | ArgNotSet = NOTSET,
    spark_conf: dict[str, str] | ArgNotSet = NOTSET,
    class_name: str | ArgNotSet = NOTSET,
    packages: list[str] | ArgNotSet = NOTSET,
    app_arguments: list[str] | ArgNotSet = NOTSET,
    app_id_suffix: Callable[[], str] | ArgNotSet = NOTSET,
    app_waiter: Literal["no_wait", "wait", "log"] | ArgNotSet = NOTSET,
    image_pull_policy: Literal["Always", "Never", "IfNotPresent"] | ArgNotSet = NOTSET,
    ui_reverse_proxy: bool | ArgNotSet = NOTSET,
    driver_resources: PodResources | ArgNotSet = NOTSET,
    executor_resources: PodResources | ArgNotSet = NOTSET,
    executor_instances: ExecutorInstances | ArgNotSet = NOTSET,
    should_print: bool | ArgNotSet = NOTSET,
    secret_values: dict[str, str] | ArgNotSet = NOTSET,
    driver_ephemeral_configmaps_volumes: list[ConfigMap] | ArgNotSet = NOTSET,
    driver_env_vars_from_secrets: list[str] | ArgNotSet = NOTSET,
    volumes: list[k8s.V1Volume] | ArgNotSet = NOTSET,
    driver_volume_mounts: list[k8s.V1VolumeMount] | ArgNotSet = NOTSET,
    executor_volume_mounts: list[k8s.V1VolumeMount] | ArgNotSet = NOTSET,
    driver_node_selector: dict[str, str] | ArgNotSet = NOTSET,
    executor_node_selector: dict[str, str] | ArgNotSet = NOTSET,
    driver_annotations: dict[str, str] | ArgNotSet = NOTSET,
    executor_annotations: dict[str, str] | ArgNotSet = NOTSET,
    driver_labels: dict[str, str] | ArgNotSet = NOTSET,
    executor_labels: dict[str, str] | ArgNotSet = NOTSET,
    driver_tolerations: list[k8s.V1Toleration] | ArgNotSet = NOTSET,
    executor_pod_template_path: str | ArgNotSet = NOTSET,
    startup_timeout: int | ArgNotSet = NOTSET,
) -> str:
    """Submit a Spark app to Kubernetes

    Args:
        image: Docker image to use for the Spark driver and executors
        app_path: Path to the application JAR / Python / R file
        namespace: Kubernetes namespace to use, defaults to "default"
        service_account: Kubernetes service account to use for the Spark driver,
            defaults to "spark"
        app_name: Name of the Spark application, defaults to a generated name as
            `spark-app{app_id_suffix()}`
        spark_conf: Dictionary of spark configuration to pass to the application
        class_name: Name of the class to execute
        packages: List of maven coordinates of jars to include in the classpath
        app_arguments: List of arguments to pass to the application
        app_id_suffix: Function to generate a suffix for the application ID, defaults to
            `default_app_id_suffix`
        app_waiter: How to wait for the app to finish. One of "no_wait", "wait", or "log"
        image_pull_policy: Image pull policy for the driver and executors, defaults to "IfNotPresent"
        ui_reverse_proxy: Whether to use a reverse proxy for the Spark UI, defaults to False
        driver_resources: Resources to request for the Spark driver. Defaults to 1 CPU core, 1Gi of
            memory and512Mi of memory overhead
        executor_resources: Resources to request for the Spark executors. Defaults to 1 CPU core, 1Gi
            of memory and 512Mi of memory overhead
        executor_instances: Number of executors to request. If max and min are not provided, dynamic
            allocation will be disabled and the number of executors will be fixed to initial or 2 if
            initial is not provided. If max or min or both are provided, dynamic allocation will be
            enabled and the number of executors will be between min and max (inclusive), and initial
            will be the initial number of executors with a default of 0.
        should_print: Whether to print logs instead of logging them, defaults to False
        secret_values: Dictionary of secret values to pass to the application as environment variables
        driver_ephemeral_configmaps_volumes: List of ephemeral configmaps to create for the application
            driver
        driver_env_vars_from_secrets: List of secret names to load environment variables from for
            the driver
        volumes: List of volumes to mount to the driver and/or executors
        driver_volume_mounts: List of volume mounts to mount to the driver
        executor_volume_mounts: List of volume mounts to mount to the executors
        driver_node_selector: Node selector for the driver
        executor_node_selector: Node selector for the executors
        driver_tolerations: List of tolerations for the driver
        executor_pod_template_path: Path to the executor pod template file
        startup_timeout: Timeout in seconds to wait for the application to start

    Returns:
        Name of the Spark application pod
    """
    if image is NOTSET:
        if Configuration.SPARK_ON_K8S_DOCKER_IMAGE is None:
            raise ValueError(
                "Docker image is not set."
                "Please set the image argument or the environment variable SPARK_ON_K8S_DOCKER_IMAGE"
            )
        image = Configuration.SPARK_ON_K8S_DOCKER_IMAGE
    if app_path is NOTSET:
        if Configuration.SPARK_ON_K8S_APP_PATH is None:
            raise ValueError(
                "Application path is not set."
                "Please set the app_path argument or the environment variable SPARK_ON_K8S_APP_PATH"
            )
        app_path = Configuration.SPARK_ON_K8S_APP_PATH
    if namespace is NOTSET:
        namespace = Configuration.SPARK_ON_K8S_NAMESPACE
    if service_account is NOTSET:
        service_account = Configuration.SPARK_ON_K8S_SERVICE_ACCOUNT
    if app_name is NOTSET:
        app_name = Configuration.SPARK_ON_K8S_APP_NAME
    if spark_conf is NOTSET:
        spark_conf = Configuration.SPARK_ON_K8S_SPARK_CONF
    if class_name is NOTSET:
        class_name = Configuration.SPARK_ON_K8S_CLASS_NAME
    if packages is NOTSET:
        packages = (
            Configuration.SPARK_ON_K8S_PACKAGES.split(",") if Configuration.SPARK_ON_K8S_PACKAGES else []
        )
    if app_arguments is NOTSET:
        app_arguments = Configuration.SPARK_ON_K8S_APP_ARGUMENTS
    if app_id_suffix is NOTSET:
        app_id_suffix = default_app_id_suffix
    if app_waiter is NOTSET:
        app_waiter = Configuration.SPARK_ON_K8S_APP_WAITER
    if image_pull_policy is NOTSET:
        image_pull_policy = Configuration.SPARK_ON_K8S_IMAGE_PULL_POLICY
    if ui_reverse_proxy is NOTSET:
        ui_reverse_proxy = Configuration.SPARK_ON_K8S_UI_REVERSE_PROXY
    if driver_resources is NOTSET:
        driver_resources = PodResources(
            cpu=Configuration.SPARK_ON_K8S_DRIVER_CPU,
            memory=Configuration.SPARK_ON_K8S_DRIVER_MEMORY,
            memory_overhead=Configuration.SPARK_ON_K8S_DRIVER_MEMORY_OVERHEAD,
        )
    if executor_resources is NOTSET:
        executor_resources = PodResources(
            cpu=Configuration.SPARK_ON_K8S_EXECUTOR_CPU,
            memory=Configuration.SPARK_ON_K8S_EXECUTOR_MEMORY,
            memory_overhead=Configuration.SPARK_ON_K8S_EXECUTOR_MEMORY_OVERHEAD,
        )
    if executor_instances is NOTSET:
        executor_instances = ExecutorInstances(
            min=Configuration.SPARK_ON_K8S_EXECUTOR_MIN_INSTANCES,
            max=Configuration.SPARK_ON_K8S_EXECUTOR_MAX_INSTANCES,
            initial=Configuration.SPARK_ON_K8S_EXECUTOR_INITIAL_INSTANCES,
        )
        if (
            executor_instances.min is None
            and executor_instances.max is None
            and executor_instances.initial is None
        ):
            executor_instances.initial = 2
    app_name, app_id = self._parse_app_name_and_id(
        app_name=app_name, app_id_suffix=app_id_suffix, should_print=should_print
    )
    if secret_values is not NOTSET and secret_values:
        env_from_secrets = [app_id]
    else:
        secret_values = Configuration.SPARK_ON_K8S_SECRET_ENV_VAR
        env_from_secrets = [app_id] if secret_values else []
    if driver_ephemeral_configmaps_volumes is NOTSET:
        driver_ephemeral_configmaps_volumes = []
    if driver_env_vars_from_secrets is NOTSET:
        driver_env_vars_from_secrets = Configuration.SPARK_ON_K8S_DRIVER_ENV_VARS_FROM_SECRET
    if driver_env_vars_from_secrets:
        env_from_secrets.extend(driver_env_vars_from_secrets)
    if volumes is NOTSET or volumes is None:
        volumes = []
    if driver_volume_mounts is NOTSET or driver_volume_mounts is None:
        driver_volume_mounts = []
    if executor_volume_mounts is NOTSET or executor_volume_mounts is None:
        executor_volume_mounts = []
    if driver_node_selector is NOTSET or driver_node_selector is None:
        driver_node_selector = {}
    if executor_node_selector is NOTSET or executor_node_selector is None:
        executor_node_selector = {}
    if driver_annotations is NOTSET or driver_annotations is None:
        driver_annotations = {}
    if executor_annotations is NOTSET or executor_annotations is None:
        executor_annotations = {}
    if driver_labels is NOTSET or driver_labels is None:
        driver_labels = {}
    if executor_labels is NOTSET or executor_labels is None:
        executor_labels = {}
    if driver_tolerations is NOTSET or driver_tolerations is None:
        driver_tolerations = []
    if executor_pod_template_path is NOTSET or executor_pod_template_path is None:
        executor_pod_template_path = Configuration.SPARK_ON_K8S_EXECUTOR_POD_TEMPLATE_PATH
    if startup_timeout is NOTSET:
        startup_timeout = Configuration.SPARK_ON_K8S_STARTUP_TIMEOUT

    spark_conf = spark_conf or {}
    main_class_parameters = app_arguments or []

    driver_resources = driver_resources or PodResources()
    executor_resources = executor_resources or PodResources()
    executor_instances = executor_instances or ExecutorInstances(initial=2)

    basic_conf = {
        "spark.app.name": app_name,
        "spark.app.id": app_id,
        "spark.kubernetes.namespace": namespace,
        "spark.kubernetes.authenticate.driver.serviceAccountName": service_account,
        "spark.kubernetes.container.image": image,
        "spark.driver.host": app_id,
        "spark.driver.port": "7077",
        "spark.kubernetes.driver.pod.name": f"{app_id}-driver",
        "spark.kubernetes.executor.podNamePrefix": app_id,
        "spark.kubernetes.container.image.pullPolicy": image_pull_policy,
        "spark.driver.memory": f"{driver_resources.memory}m",
        "spark.executor.cores": f"{executor_resources.cpu}",
        "spark.executor.memory": f"{executor_resources.memory}m",
        "spark.executor.memoryOverhead": f"{executor_resources.memory_overhead}m",
        **self._executor_secrets_config(secret_values=secret_values, app_id=app_id),
    }
    extra_labels = {}
    if ui_reverse_proxy:
        basic_conf["spark.ui.proxyBase"] = f"/webserver/ui/{namespace}/{app_id}"
        basic_conf["spark.ui.proxyRedirectUri"] = "/"
        extra_labels["spark-ui-proxy"] = "true"
    if executor_instances.min is not None or executor_instances.max is not None:
        basic_conf["spark.dynamicAllocation.enabled"] = "true"
        basic_conf["spark.dynamicAllocation.shuffleTracking.enabled"] = "true"
        basic_conf["spark.dynamicAllocation.minExecutors"] = f"{executor_instances.min or 0}"
        if executor_instances.max is not None:
            basic_conf["spark.dynamicAllocation.maxExecutors"] = f"{executor_instances.max}"
        basic_conf["spark.dynamicAllocation.initialExecutors"] = f"{executor_instances.initial or 0}"
    else:
        basic_conf["spark.executor.instances"] = (
            f"{executor_instances.initial if executor_instances.initial is not None else 2}"
        )
    if executor_volume_mounts:
        basic_conf.update(
            self._executor_volumes_config(volumes=volumes, volume_mounts=executor_volume_mounts)
        )
    if executor_node_selector:
        basic_conf.update(self._executor_node_selector(node_selector=executor_node_selector))
    if executor_labels:
        basic_conf.update(self._executor_labels(labels=executor_labels))
    if executor_annotations:
        basic_conf.update(self._executor_annotations(annotations=executor_annotations))
    if executor_pod_template_path:
        basic_conf.update(self._executor_pod_template_path(executor_pod_template_path))
    driver_command_args = ["driver", "--master", "k8s://https://kubernetes.default.svc.cluster.local:443"]
    if class_name:
        driver_command_args.extend(["--class", class_name])
    if packages:
        driver_command_args.extend(["--packages", ",".join(packages)])
    driver_command_args.extend(
        self._spark_config_to_arguments({**basic_conf, **spark_conf}) + [app_path, *main_class_parameters]
    )

    if driver_ephemeral_configmaps_volumes:
        application_configmaps_volumes = self.app_manager.create_configmap_objects(
            app_name=app_name,
            app_id=app_id,
            configmaps=driver_ephemeral_configmaps_volumes,
            namespace=namespace,
        )
        for ind, configmap in enumerate(application_configmaps_volumes):
            volumes.append(
                k8s.V1Volume(
                    name=configmap.metadata.name,
                    config_map=k8s.V1ConfigMapVolumeSource(name=configmap.metadata.name),
                )
            )
            driver_volume_mounts.append(
                k8s.V1VolumeMount(
                    name=configmap.metadata.name,
                    mount_path=driver_ephemeral_configmaps_volumes[ind]["mount_path"],
                )
            )
    else:
        application_configmaps_volumes = []

    pod = SparkAppManager.create_spark_pod_spec(
        app_name=app_name,
        app_id=app_id,
        image=image,
        image_pull_policy=image_pull_policy,
        namespace=namespace,
        service_account=service_account,
        args=driver_command_args,
        extra_labels={**extra_labels, **driver_labels},
        annotations=driver_annotations,
        pod_resources={
            "requests": {
                "cpu": f"{driver_resources.cpu}",
                "memory": f"{driver_resources.memory + driver_resources.memory_overhead}Mi",
            },
            "limits": {
                "cpu": f"{driver_resources.cpu}",
                "memory": f"{driver_resources.memory + driver_resources.memory_overhead}Mi",
            },
        },
        env_from_secrets=env_from_secrets,
        volumes=volumes,
        volume_mounts=driver_volume_mounts,
        node_selector=driver_node_selector,
        tolerations=driver_tolerations,
    )
    with self.k8s_client_manager.client() as client:
        api = k8s.CoreV1Api(client)
        if secret_values:
            application_secret = self.app_manager.create_secret_object(
                app_name=app_name,
                app_id=app_id,
                secrets_values=secret_values,
                namespace=namespace,
            )
            api.create_namespaced_secret(namespace=namespace, body=application_secret)
        for configmap in application_configmaps_volumes:
            api.create_namespaced_config_map(namespace=namespace, body=configmap)
        pod = api.create_namespaced_pod(
            namespace=namespace,
            body=pod,
        )
        if secret_values:
            application_secret.metadata.owner_references = [
                k8s.V1OwnerReference(
                    api_version="v1",
                    kind="Pod",
                    name=pod.metadata.name,
                    uid=pod.metadata.uid,
                )
            ]
            api.patch_namespaced_secret(
                namespace=namespace,
                name=application_secret.metadata.name,
                body=application_secret,
            )
        for configmap in application_configmaps_volumes:
            configmap.metadata.owner_references = [
                k8s.V1OwnerReference(
                    api_version="v1",
                    kind="Pod",
                    name=pod.metadata.name,
                    uid=pod.metadata.uid,
                )
            ]
            api.patch_namespaced_config_map(
                namespace=namespace,
                name=configmap.metadata.name,
                body=configmap,
            )
        api.create_namespaced_service(
            namespace=namespace,
            body=SparkAppManager.create_headless_service_object(
                app_name=app_name,
                app_id=app_id,
                namespace=namespace,
                pod_owner_uid=pod.metadata.uid,
                extra_labels=extra_labels,
            ),
        )
    if app_waiter == SparkAppWait.LOG:
        self.app_manager.stream_logs(
            namespace=namespace,
            pod_name=pod.metadata.name,
            startup_timeout=startup_timeout,
            should_print=should_print,
        )
    elif app_waiter == SparkAppWait.WAIT:
        self.app_manager.wait_for_app(
            namespace=namespace,
            pod_name=pod.metadata.name,
            poll_interval=5,
            startup_timeout=startup_timeout,
            should_print=should_print,
        )
    return pod.metadata.name

default_app_id_suffix()

Default function to generate a suffix for the application ID

Returns:

Type Description
str

the current timestamp in the format %Y%m%d%H%M%S prefixed with a dash (e.g. -20240101123456)

Source code in spark_on_k8s/client.py
25
26
27
28
29
30
31
def default_app_id_suffix() -> str:
    """Default function to generate a suffix for the application ID

    Returns:
        the current timestamp in the format %Y%m%d%H%M%S prefixed with a dash (e.g. -20240101123456)
    """
    return f"-{datetime.now().strftime('%Y%m%d%H%M%S')}"